台科大醫工所教授王靖維團隊開發「通用3D病灶分割AI模型」,用於電腦斷層CT掃描影像,迅速且精準辨識與分割多類別胸腹部病灶,在今年國際醫療3D CT影像AI競賽(ULS23)中榮獲第3名佳績。
傳統電腦斷層掃描影像(CT)在分割病灶的難點包括:病灶識別困難、需大量專業人力分析和手動標註病灶相當耗時,導致診斷效率低下,增加醫療成本。人工標註過程中,容易因疲勞、有限診斷作業時間和經驗不足而漏判。
被列為「全球排名前2%頂尖科學家」的王靖維表示,團隊研究開發「通用3D病灶分割AI模型」,可精準辨識多類別胸腹部(包括骨骼、胰臟、腎臟、肝臟、肺結節、肺部、結腸、淋巴結和縱膈)病灶,適用於胸腹部CT影像,可自動化精準標註多種3D CT病灶,幫助放射科醫師以3D形式標註病灶,解決手動標註耗費大量人力成本問題。
「通用3D病灶分割AI模型」除了精準辨識,在處理效率上更充分滿足臨床應用需求。傳統人工標註每案約耗費30到60分鐘,但團隊AI技術在配備單一T4 GPU的Grand Challenge平台伺服器上處理每個3D病灶資料只需3.25秒。若使用配備RTX4080的本機PC則不到2秒。
王靖維說明,3D的CT影像病灶分割與2D影像相比,提供更多有助醫師監控病灶成長的資訊,如病灶體積、形狀和空間位置。CT掃描的自動AI病灶分割比手動分割具有優勢,包括提高效率、可重複性、準確性和標準化,從而實現更精確的定量分析,並促進研究成果轉化為臨床實踐。
發表意見
中時新聞網對留言系統使用者發布的文字、圖片或檔案保有片面修改或移除的權利。當使用者使用本網站留言服務時,表示已詳細閱讀並完全了解,且同意配合下述規定:
違反上述規定者,中時新聞網有權刪除留言,或者直接封鎖帳號!請使用者在發言前,務必先閱讀留言板規則,謝謝配合。